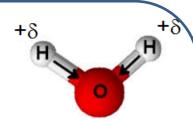

Les différents types de détachants

DOC1: Electronégativité d'un atome


- Dans les molécules, les atomes sont reliées par des liaisons, appelées « **liaisons covalentes** ». Ces liaisons sont constituées d'électrons ; les électrons de la liaison ne sont pas forcément à égale distance des atomes de la liaison. Cela dépend de l'électronégativité des atomes.
- L'électronégativité d'un atome donne son aptitude à attirer les électrons de la liaison dans laquelle il est engagé.

H		Echelle d'électronégativité de PAULING pour quelques éléments chimiques			He		
2,1		(En unité atomique de moment dipolaire : 1 u.a.m.d = 2,54 Debye)			0		
Li	Be	B	C	N	O	F	Ne
1,0	1,5	2,0	2,5	3,0	3,5	4,0	0
Na	Mg	AI	Si	P	S	CI	Ar
0,9	1,2	1,5	1,8	2,1	2,5	3,0	0

DOC2 : Polarité d'une molécule

• Une molécule est dite « **polaire** » si la répartition des charges au sein de la molécule n'est pas homogène.

→ Quelques exemples de molécules polaires :

- Molécules possèdant un ou plusieurs atomes fortement -2δ électronégatifs (O, S, Cl) et une petite chaine carbonée (l'eau, l'acétone, l'éthanol, le chloroforme....)
- Une molécule est dite « a**polaire** » si la répartition des charges au sein de la molécule est pratiquement homogène.

→ Quelques exemples de molécules apolaires :

- Molécules possédant que des atomes faiblement électronégatif (C,H)
- Molécules possédant quelques atomes électronégatifs (O, CI) mais une très grande chaine carbonée.
- Molécules possédant des atomes identiques

DOC3: L'Eau Ecarlate

• L'Eau Ecarlate est constituée d'un mélange de solvants aliphatiques, solvants provenant de la pétrochimie et constitués essentiellement de carbone et d'hydrogène

CONSEILS DE PRUDENCE

- L'inhalation des vapeurs peut provoquer somnolence et vertiges.
- En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste.
- Irritant pour la peau. En cas de contact avec la peau, laver soigneusement avec de l'eau et du savon.
- Très toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
- Eviter le rejet dans l'environnement.
 Ne pas jeter les résidus à l'égout.

CARACTERISTIQUES

Eau Ecarlate Professionnel Détacheur Universel nettoie, ravive, rafraîchit et élimine en toute sécurité les taches sur les textiles.

- · ASPECT: liquide transparent incolore
- COMPOSITION CHIMIQUE:

COMPOSANTS	EFFICACITE
mélange de solvants aliphatiques	dégraisse les textiles

- Densité à 15 °C : 0,697
- Eau Ecarlate Professionnel Détacheur Universel élimine en douceur taches et salissures puis s'évapore en laissant un léger parfum.
- Nettoie, ravive, rafraîchit et élimine en toute sécurité les taches fraîches, incrustées, grasses, collantes et enlève les traces de goudron, cambouis, résine...
- S'utilise sur tous les textiles : soie, tissus d'ameublement, tapis intérieurs de voiture...

DOC4: Quelques taches à retirer

L'essentiel du **miel** est composé de sucres monosaccharides qui sont le *glucose* et le *fructose*.

 $- O - (CH_2)_{29} - CH_3$

0 ||

Le rouge à lèvres est un mélange dont l'excipient est la cire d'abeille constituée majoritairement de *palmitate de myricyle*.

L'huile d'olive, la margarine, sont composés de *triglycérides*.

CH₃ -- (CH₂)₁₄

Un dentifrice comprend plusieurs ingrédients liés ensemble ——par le glycérol.

Le lycopène est le pigment présent dans les carottes et tomates

Le colorant présent dans **l'encre bleue** pour stylo plume est le *bleu d'aniline*

1. Polarité de deux solvants

Une burette contient de l'eau, une seconde du cyclohexane.

- Approcher une règle frottée du filet de liquide s'écoulant des burettes.
- \rightarrow Qu'observe-t-on ? Comment peut-on expliquer le phénomène observé ?

zone de répartition aléatoire des charges
zone de séparation des charges et de déviation du filet d'eau
zone de répartition aléatoire des charges

2. Solubilité d'un soluté dans un solvant

- ► Pour réaliser une solution, on dissout un soluté dans un solvant
- On dispose :
 - <u>de 2 solvants</u>: l'eau et le cyclohexane
 - <u>de 3 solutés</u> : le sel, le diiode, et le sucre.
- → Que peut-on dire de la polarité de l'eau, du cyclohexane, du diiode et du saccharose ?

H—O H molécule d'eau	H H H H H H H H H H	molécule de cyclohexane
I——I H molécule de HO- diiode	OH OH OH	molécule de saccharose OH

Molécules polaires	Molécules apolaires

- → Proposer puis réaliser un protocole expérimental permettant de comparer :
 - (1) la solubilité du sel dans l'eau, et dans le cyclohexane
 - (2) la solubilité du diiode dans l'eau, et dans le cyclohexane
 - (3) la solubilité du sucre dans l'eau, et dans le cyclohexane
- → Indiquer les observations dans tableau ci-dessous

	Dans l'eau	Dans le cyclohexane
Solubilité du sel		
Solubilité du diiode		
Solubilité de sucre		

- → Compléter les phrases suivantes :
- Pour dissoudre un composé polaire ou ionique, il faut utiliser un solvant
- ♥ Pour dissoudre un composé apolaire, il faut utiliser un solvant

3. Applications

•	meublement,), on dispose d		détachants :
- Un détachant A :	à base d' éthanol	н—с—с—он	
- Un détachant B :	à base de solvants aliphatiq ı	ues HHH	(type Eau Ecarlate®)
→ Le détachant A enlever ?	est-il un solvant polaire ou apo	olaire ? Pourquoi ? Quels typ	es de taches peut-il
→ Le détachant B enlever ?	est-il un solvant polaire ou apo	olaire ? Pourquoi ? Quels typ	es de taches peut-il
→ Indiquer quel es	t le solvant qu'il faut utiliser afi	n d'enlever les taches du DC Solvant a	
	Polarité de la molécule	Solvant A	Solvant B
	composant la tache	(à base d'éthanol)	(à base de solvants)
Miel	,	,	
Rouge à lèvres			
Huile d'olive			
Dentifrice			
Encre bleue			
Lycopène			
des carottes râpée	ficile de détacher, avec de l'ea s ou un plat à base de tomate. ion de l'huile d'olive		-