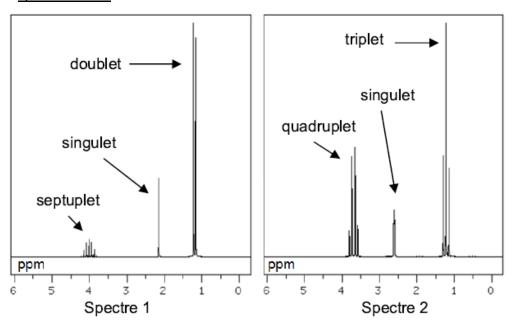
Sujet 101: DE LA BETTERAVE SUCRIÈRE AUX CARBURANTS --- correction

1)


• Electronégativité comparées χ de quelques éléments $\chi(O) > \chi(C)$; $\chi(C) \approx \chi(H)$

Le saccharose contenu dans les betteraves sucrières est extrait avec de l'eau grace à un montage à reflux. L'eau est un solvant adapté à cette extraction.

Le saccharose possède plusieurs groupements hydroxyle OH. Or l'atome d'oxygène possède une plus grande électronégativité que celui d'hydrogène, dès lors l'atome O est porteur d'une charge partielle négative δ – et l'atome d'hydrogène est porteur d'une charge partielle positive δ +. La liaison O–H est polarisée.

Les groupes O-H vont pouvoir former des liaisons hydrogène avec les molécules d'eau ce qui explique la grande solubilité du saccharose.

2) <u>formule semi-développée de l'éthanol</u> CH₃–CH₂–OH <u>spectres RMN</u>

Les deux spectres présentent trois signaux, il faut regarder la multiplicité des signaux pour déterminer quel spectre appartient à l'éthanol.

Le spectre de l'éthanol contient un singulet provenant du proton du groupement hydroxyle.

Les trois protons du groupement CH₃- ont deux atomes d'hydrogène sur l'atome de carbone voisin et donnent un triplet.

Les deux protons centraux -CH₂- ont trois plus proches voisins et donnent un quadruplet.

Seul le spectre 2 possède un singulet, un triplet et un quadruplet, c'est donc le spectre de l'éthanol.

Masse d'éthanol obtenu par la fermentation du saccharose contenu dans une betterave sucrière de masse 1,25 kg

Masse de saccharose dans la betterave : $m_{\text{saccharose}} = 0,195 \times m_{\text{betterave}} = 0,195 \times 1,25 = 0,244 \text{ kg}$

$$n_{\text{saccharose}} = \frac{m_{\text{saccharose}}}{M_{\text{saccharose}}} = \frac{244}{342} = \textbf{0,713 mol}$$

D'après les coefficients de l'équation $C_{12}H_{22}O_{11(aq)}+H_2O_{(l)}\rightarrow 4$ $C_2H_6O_{(aq)}+4$ $CO_{2(g)}$

1 mole de saccharose forme après fermentation 4 moles d'éthanol. Donc à partir de 0,713 mol de saccharose, on peut obtenir

$$n_{\text{\'ethanol}} = 4 \times 0.713 = 2.85 \text{ mol}$$

Masse d'éthanol :
$$m_{\text{\'ethanol}} = n_{\text{\'ethanol}} \times M_{\text{\'ethanol}} = 2,85 \times 46 = 131 \text{ g}$$

3) Et si on roulait tous au biocarburant?

$$Volume \ d'éthanol \ form\'e \ \grave{a} \ partir \ de \ la \ betterave \ : \ V_{\acute{e}thanol} = \frac{m_{\acute{e}thanol}}{\rho_{\acute{e}thanol}} = \frac{131}{789.10^3} = 1,66.10-4 \ m3 = \textbf{166 mL}$$

Une betterave de 1,25 kg peut former 166 mL $(1,66.10^{-4} \,\mathrm{m}^3)$ d'éthanol ; donc pour obtenir $3.10^6 \,\mathrm{m}^3$ de bioéthanol, il faut

$$m_{\text{betterave}} = \frac{1,25 \times 3.10^6}{1.66.10^{-4}} = 2,26.10^{10} \text{ kg} = 2,26.10^7 \text{ tonnes}$$

Surface agricole nécessaire : surface =
$$\frac{2,26.10^7}{74.8}$$
 = 3,02.10⁵ hectares

Cette surface représente :
$$\frac{3,02.10^5}{10.10^6} = 0,0302 = 3 \%$$
 de la surface cultivée

On peut penser que si le bioéthanol n'est pas plus utilisé, c'est qu'il est surement plus cher à produire que l'essence.