Dosages par étalonnage

L'objectif d'un dosage est de déterminer la quantité de matière ou la concentration d'une espèce chimique présente dans un échantillon

Pour déterminer la concentration d'un soluté dans une solution, on peut réaliser :

- un dosage par étalonnage (non destructif) qui repose sur des mesures physiques.
- un dosage par titrage (destructif) qui fait met en jeu une transformation chimique.

1. Principe d'un dosage par étalonnage

Un dosage par étalonnage consiste à déterminer la concentration molaire C_x d'une espèce chimique en solution S_x en comparant une grandeur physique de la solution avec la même grandeur physique mesurée pour des solutions étalons S_i de concentrations molaires C_i connues.

La grandeur physique mesurée peut être l'absorbance A d'une solution colorée, la conductivité σ d'une solution ionique ...

2. Utilisation de la spectrophotométrie

2.1. Lumière blanche

La lumière blanche contient toutes les radiations visibles : les couleurs s'étendent du violet au rouge.

Couleur des radiations lumineuses	Violet	Bleu	Vert	Jaune	Orange	Rouge
Longueur d'onde λ (nm)	400 - 446	446- 500	500 - 578	578 – 592	592 - 620	620 - 700

2.2. Solutions colorées

Une solution est colorée si elle absorbe une partie des radiations de la lumière blanche. La couleur perçue correspond aux radiations complémentaires de celles qui ont été absorbées.

Longueur d'onde des photons absorbés (nm)	Radiation absorbée	Radiation perçue	
400- 446	Violet	Vert	
446- 500	Bleu	Jaune	
500- 578	Bleu-Vert	Rouge	
578-592	Jaune	Bleu	
592-620	Orange	Vert-bleu (cyan)	
620-700	Rouge	Vert-bleu (cyan)	

2.3. Loi de Beer Lambert

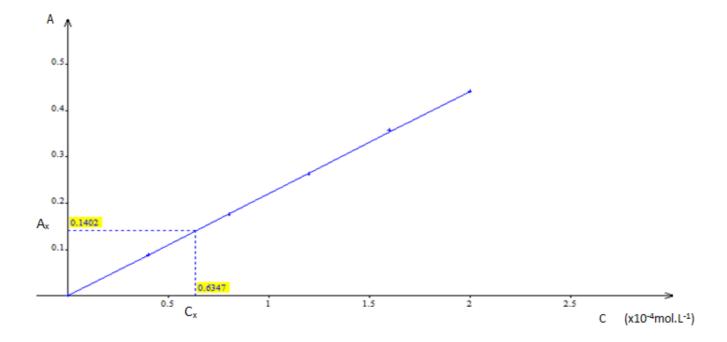
L'absorbance A d'une solution limpide contenant une espèce chimique colorée est **proportionnelle** à sa concentration molaire C. Cette loi est vérifiée si C est inférieure à 10⁻² mol.L⁻¹.

$$A = K \times C$$

A: absorbance (sans unité)

C: concentration molaire (mol.L⁻¹)

k: coefficient d'absorbance (L.mol - 1)


L'absorbance A d'une solution colorée est donc une **fonction linéaire** de sa concentration. On obtient graphiquement une **droite d'étalonnage** qui passe par l'origine.

Le coefficient d'absorbance k dépend de la longueur de la cuve et de la nature de l'espèce chimique qui absorbe les radiations lumineuses.

2.4. Dosage spectrophotométrique

Un dosage par étalonnage utilisant la spectrophotométrie permet la détermination d'une concentration C_x d'un soluté coloré en solution aqueuse à partir d'une droite d'étalonnage. On mesure à l'aide d'un spectrophotomètre l'absorbance A_i de plusieurs solutions contenant ce même soluté de concentrations C_i puis on trace la courbe A_i = f (C_i). On obtient une droite dite « d'étalonnage ».

On mesure la valeur de l'absorbance A_x de la solution S_x puis on la reporte sur le graphique. L'abscisse du point correspondant sur la droite d'étalonnage correspond à la concentration C_x du soluté.

