Isoler une inconnue dans une expression littérale

Une expression littérale est une relation comportant que des lettres ou quelques nombres et des lettres ; on l'utilise pour donner une formule ou une propriété.

Exemple: l'aire d'un triangle de hauteur h et de base b est $A = \frac{b \times h}{2}$

Il est souvent nécessaire de modifier l'expression littérale initiale afin d'en tirer une inconnue ; Comment faire ??

1ère Partie : Résoudre une équation en mathématiques

A : Priorité des opérations

Priorité des opérations			
quand il n'y a pas de parenthèses	quand il y a des parenthèses		
Ordre de priorité des opérations qu'il faut respecter : 1 Les exposants 2 les multiplications et les divisions (de la gauche vers la droite) 3 Les additions et les soustractions	On commence toujours par calculer ce qui est à l'intérieur des parenthèses, en respectant les règles de priorité énoncées ci-contre		

Exemples

$5+2\times 7+3=5+14+3=22$	$(5+2)\times 7+3=7\times 7+3=49+3=52$
$6+8 \div 4 \times 3 - 1 = 6 + 2 \times 3 - 1 = 6 + 6 - 1 = 11$	$(6+8) \div 4 \times (3-1) = 14 \div 4 \times 2 = 14 \div 4 \times 2 = 3,5 \times 2 = 7$

Faire l'application 1

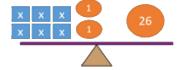
B : Résoudre une équation ax + b = c

Lorsque l'on résout une telle équation, on tente de déterminer la valeur de la variable x qui solutionne l'équation. On utilise la méthode de la balance. Cette méthode consiste à isoler la variable dans un des membres de l'équation de façon à obtenir x=??

On applique les règles de transformation des équations

Règle 1 Pour respecter l'égalité dans l'équation (et garder l'équilibre de notre balance !!), il faut faire la même opération des 2 côtés de l'égalité On peut : - Additionner ou soustraire le même nombre aux deux membres de l'équation - Multiplier ou diviser les deux membres de l'équation par un même nombre différent de 0 - Prendre la racine carrée de chaque membre de l'équation

Règle 2


Faire les opérations inverses* dans l'ordre inverse de priorité (les additions et soustractions AVANT les multiplications et divisions)

*Les opérations inverses :		
une addition s'inverse avec une soustraction	une multiplication s'inverse avec une division	
une soustraction s'inverse avec une addition	une division s'inverse avec une multiplication	
une puissance de 2 s'inverse avec une racine carrée		

Exemple: Trouver la valeur de x dans l'équation 6x + 2 = 26

Etape 1 : Pour faire disparaitre le terme +2 de gauche, on effectue l'opération inverse de l'addition, la soustraction :

∜il faut soustraire 2 aux deux membres de l'équation

6x + 2 - 2 = 26 - 2	6x = 24
x x x 1 26 x x x 1	x x x x x x x x x x x x x x x x x x x

Etape 2 : On cherche à trouver la valeur d'un seul x. Il faut faire l'opération inverse de la multiplication, la division :

∜il faut diviser chaque côté de l'égalité par 6

$\frac{6x}{6} = \frac{24}{6}$	x = 4
x x x x x x x x x x x x x x x x x x x	x 4

Exemple : Trouver la valeur de x dans l'équation

$$\frac{2x}{3} - 16 = -6$$

Etape 1 : Pour faire disparaitre le terme -16 de gauche, on effectue l'opération inverse de la soustraction, l'addition :

🔖 il faut additionner 16 aux deux membres de l'équation

$$\frac{2x}{3} - 16 + \mathbf{16} = -6 + \mathbf{16}$$

$$\frac{2x}{3} = 10$$

Etape 2 : Pour faire disparaitre la division par 3 de gauche, on effectue l'opération inverse de la division, la multiplication :

∜il faut multiplier par 3 chaque côté de l'égalité

$$\frac{2x}{3} \times 3 = 10 \times 3$$

$$\frac{2x}{3} \times 3 = 30$$

$$2x = 30$$

Etape 3 : Pour faire disparaitre la multiplication par 2 de gauche, on effectue l'opération inverse de la multiplication, la division :

∜il faut diviser par 2 chaque côté de l'égalité

$$\frac{2x}{2} = \frac{30}{2}$$
$$x = 15$$

Faire l'application 2

2^{nde} Partie : Isoler une inconnue dans une expression littérale

Faire l'application 3

3^{ème} Partie: Les applications

Application 1: Calculer (sans calculatrice!)

$$-3 + 5 \times 2 + 4 \div 2 =$$

$$2\!\times\!6\div\!4+8\!\times\!3\div\!2=$$

$$-3+\left[5\times\left(2+4\right)\right]\div2=$$

Application 2: Calculer les valeurs de x

5	=	6 <i>x</i>

$$7 = \frac{1}{x}$$

$$8 = \frac{x}{3}$$

$$9 = \frac{3}{2x}$$

$$6 = 3 \times \frac{2x}{5}$$

$$18 = 2 \times \frac{3}{5x}$$

$$\frac{x}{3} = \frac{5}{4}$$

$$\frac{3}{9} = \frac{7}{x}$$

$$4x + 3 = 9$$

$$7 = -6 + 3x$$

$$3 = \frac{x+2}{4}$$

$$\frac{3x-2}{5} + \frac{2}{3} = \frac{5}{6}$$

$$\frac{4}{2x+1} = \frac{3}{2}$$

$$7=4x^2$$

$$9 = 3x^2 + 2$$

$$3 = 4 \times \frac{2}{3x^2}$$

$$4 = \frac{7}{2} \times 3x^2$$

$$\frac{1}{x} - \frac{4}{3} = \frac{5}{6}$$

$$\frac{2}{9} - \frac{1}{x} = \frac{5}{3}$$

$$4 = 3 \times (2x - 3)$$

$$5 = \frac{3 \times (4 - x)}{2}$$

Application 3: On donne ci-dessous quelques formules utilisées en sciences physiques. Exprimer la grandeur demandée en fonction des autres grandeurs

$$P = m \times g$$

Exprimer m

$$f=\frac{1}{T}$$

Exprimer *T*

$$v=\frac{d}{t}$$

Exprimer *t* puis *d*

$$C = \frac{m}{M \times V}$$

Exprimer m puis V

$$F = G \times \frac{m_A \times m_B}{d^2}$$

Exprimer m_A puis d

$$Ec = \frac{1}{2}mv^2$$

Exprimer v

$$\frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}}$$

Exprimer $\overline{OA'}$ puis \overline{AB}

$$P_B - P_A = \rho \times g \times h$$

Exprimer P_A puis h

$$Q = m \times C \times (T_f - T_i)$$

Exprimer T_f puis m

$$\frac{1}{2}m{V_B}^2 - \frac{1}{2}m{V_A}^2 = mgh$$

Exprimer V_A

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

Exprimer $\overline{OA'}$ puis f'

$$\phi = \frac{m \times C \times (T_2 - T_1)}{\wedge t}$$

Exprimer m puis T_1

AP Tutorat 1^{ère}/term STL SPCL