Etude d'un lait aromatisé à l'ananas







## Mots clés Estérification, mécanisme réactionnel, spectroscopie IR

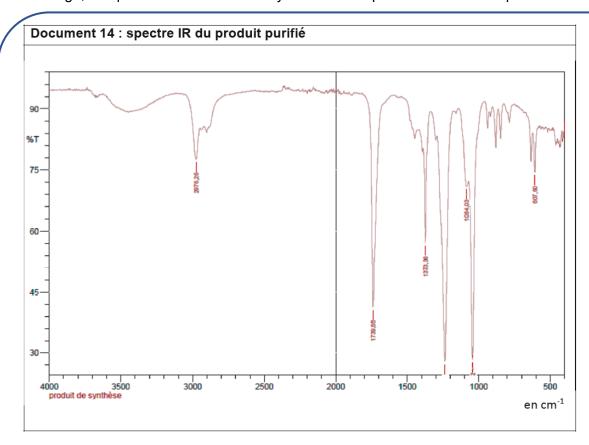
Métropole - mars

On cherche à étudier un arôme alimentaire d'ananas utilisé par l'industrie laitière dans les laits aromatisés ou les yaourts dont le principal ingrédient est le butanoate d'éthyle. Sa formule semi-développée est donnée ci-contre.

CH<sub>3</sub>—CH<sub>4</sub>

1) Nommer la réaction chimique permettant de synthétiser cette famille de molécules ?

- 2) Indiquer la formule semi-développée du réactif **A** permettant de compléter l'équation de la réaction de synthèse du butanoate d'éthyle.
- 3) Dans le mécanisme réactionnel ci-dessus, ajouter les flèches courbes (une seule flèche sur chaque étape) illustrant le mouvement de doublet d'électrons de l'étape 1 et de l'étape 2.
- **4)** Parmi les termes suivants choisir le terme correspondant à l'étape 4 : *réduction addition substitution élimination*
- 5) Préciser le rôle du catalyseur.
- 6) À l'aide du mécanisme réactionnel, identifier le catalyseur de cette réaction. Justifier votre réponse.
- 7) La synthèse du butanoate d'éthyle est réalisée de la façon suivante :


## Document 12 : protocole opératoire utilisé pour la synthèse du butanoate d'éthyle

- Une quantité de matière  $n_A$  = 0,500 mol de réactif  $\underline{\mathbf{A}}$  et un volume  $V_B$  = 100 mL d'éthanol ( $\underline{\mathbf{B}}$ ) sont introduits dans un ballon de 250 mL. Une masse de 0,42 g d'acide paratoluène sulfonique (jouant le même rôle que l'acide sulfurique  $H_2SO_4$ ) est ajoutée.
- Le mélange est chauffé à reflux pendant 2 heures.
- Après isolement du produit brut, le butanoate d'éthyle est purifié.
- La masse de butanoate d'éthyle ainsi obtenue est  $m_D$  = 31,9 g.

| Document 13 : caractéristiques physiques des composés      |                                                              |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| éthanol                                                    | butanoate d'éthyle                                           |  |  |  |
| liquide incolore                                           | liquide incolore                                             |  |  |  |
| • masse volumique : $\rho_B$ = 0,789 g.mL <sup>-1</sup>    | • masse molaire : $M_D$ = 116,12 g.mol <sup>-1</sup>         |  |  |  |
| • masse molaire : $M_B = 46,06 \text{ g.mol}^{-1}$         | température d'ébullition :                                   |  |  |  |
| • température d'ébullition : $T_{eb}$ ( <b>B</b> ) = 79 °C | T <sub>eb</sub> ( <u>D</u> ) = 121 °C à la pression de 1 bar |  |  |  |
| à la pression de 1 bar                                     |                                                              |  |  |  |

Indiquer une méthode de purification possible du butanoate d'éthyle obtenu dans la synthèse étudiée, en justifiant votre réponse.

8) L'analyse par spectroscopie IR du produit purifié a donné les résultats ci-dessous. À partir du spectre infrarouge, indiquer si le butanoate d'éthyle obtenu est pur. Justifier votre réponse.



| Document 15 : table des nombres d'onde des vibrations en spectroscopie infrarouge |                        |                                      |  |  |
|-----------------------------------------------------------------------------------|------------------------|--------------------------------------|--|--|
| Liaison                                                                           | Nature de la vibration | Nombre d'onde (en cm <sup>-1</sup> ) |  |  |
| O-H                                                                               | Élongation             | 3200-3600                            |  |  |
| C <sub>tri</sub> -H                                                               | Élongation             | 3030-3100                            |  |  |
| C <sub>tet</sub> -H                                                               | Élongation             | 2850-2970                            |  |  |
| O-H acide carboxylique                                                            | Élongation             | 2500-3200                            |  |  |
| C=O ester                                                                         | Élongation             | 1735-1750                            |  |  |
| C=O aldéhyde / cétone                                                             | Élongation             | 1700-1740                            |  |  |
| C=O acide carboxylique                                                            | Élongation             | 1700-1725                            |  |  |
| C=C                                                                               | Élongation             | 1620-1690                            |  |  |
| C <sub>tet</sub> -H                                                               | Déformation            | 1430-1470                            |  |  |
| C <sub>tet</sub> -H (CH <sub>3</sub> )                                            | Déformation            | 1370-1390                            |  |  |
| C <sub>tet</sub> -OH                                                              | Élongation             | 1010-1200                            |  |  |

| C <sub>tet</sub> : C tétragonal | c | C <sub>tri</sub> : C trigonal | c_ |
|---------------------------------|---|-------------------------------|----|
|---------------------------------|---|-------------------------------|----|

- 9) Montrer que le rendement de la synthèse dans ces conditions est de 55 %.
- 10) Citer une méthode permettant d'augmenter le rendement de la réaction.