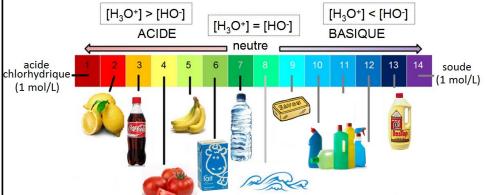
TP11


Dosage de la soude dans le Destop

■ Une solution commerciale S₀ de déboucheur de canalisation peut être assimilée à une solution aqueuse d'hydroxyde de sodium (Na⁺; HO⁻); on désire déterminer la concentration de cette solution en hydroxyde de sodium en la faisant réagir avec de l'acide chlorhydrique (H₃O⁺; Cl⁻)

DOC1/ pH d'une solution aqueuse

- Le pH est une grandeur permettant d'évaluer si un milieu est acide, basique ou neutre
- Le pH peut prendre des valeurs comprises entre 0 et 14. Le pH ne possède pas d'unité.
- Une solution acide a un pH compris entre 0 et 7.
- Une solution basique a un pH compris entre 7 et 14.
- Une solution neutre aura un pH égal à 7.

- Toute solution contient des ions hydroxyde (HO⁻) et oxonium ou hydronium (H₃O⁺). Le pH est directement lié à la concentration en ces ions.
- Une solution neutre contient autant d'ions HO⁻ que d'ions H₃O⁺
- Une solution acide possède plus d'ions H₃O⁺ que d'ions HO[−]
- **Une solution basique** possède plus d'ions HO⁻ que d'ions H₃O⁺
- Le pH d'une solution peut être mesuré à l'aide d'un *pH-mètre*.

DOC2/ Conductivité d'une solution aqueuse

La conductivité d'une solution ionique est une grandeur qui montre la capacité de la solution à conduire le courant électrique.

Cette conductivité, possible grâce à la présence d'ions dans la solution, dépend de différents facteurs :

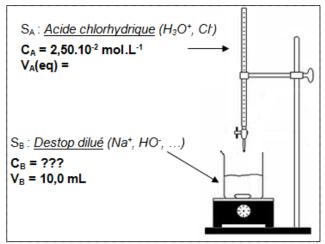
- de la nature des ions dans la solution
- de la concentration des ions
- de la température de la solution.

conductivités molaires ioniques (S.m².mol-¹)						
H ₃ O⁺	Cl-	Na⁺	OH-			
34,97.10 ⁻³	7,631. 10 ⁻³	5,008. 10 ⁻³	19,8. 10 ⁻³			

- Les ions sont caractérisés par des conductivités molaires ioniques (en S.m².mol⁻¹) donnant leur aptitude à conduire le courant électrique ; plus les conductivités
 molaires ioniques des ions constituant une solution sont importantes, plus la solution est conductrice et donc plus elle laisse passer facilement le courant électrique
- On peut mesurer la conductivité d'une solution ionique à l'aide d'un conductimètre

Dilution de la solution

■ Etant trop concentrée pour être dosée directement, la solution doit être diluée 100 fois.


♦ On appelle :

S : la solution commerciale de concentration C
S_B : la solution diluée de concentration C_B

- → Rédiger le protocole qui permet de réaliser la dilution à l'aide du matériel suivant :
- fioles jaugées de 50 mL, 100 mL, 250 mL
- pipettes jaugées de 1 mL, 5 mL, 10 mL, 20 mL
- Réaliser la dilution du Destop®

Présentation des dosages

 $\$ Au cours de la réaction, les ions H_3O^+ de l'acide chlorhydrique réagissent avec les ions HO^- de la solution de Destop, selon la réaction :

$$H_3O^+ + HO^- \rightarrow 2 H_2O$$

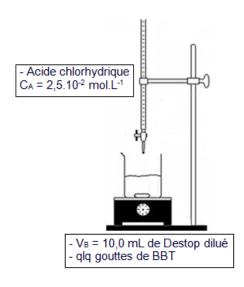
♦ On appelle :

 $[H_3O^+]$ = C_A , la concentration en quantité de matière des ions H_3O^+ dans l'acide chlorhydrique

[HO⁻] = C_B, la concentration en quantité de matière des ions HO⁻ dans le Destop dilué

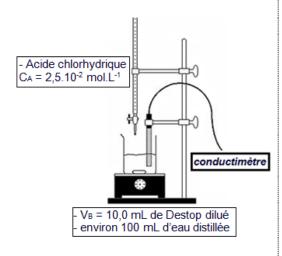
 $\mathbf{V}_{\mathsf{A}(\mathsf{eq})}$, le volume de l'acide chlorhydrique versé à l'équivalence du dosage

V_B, le volume de Destop dilué dosé


- → Donner la définition de l'équivalence d'un dosage
- → Trouver la relation qui existe entre la quantité de H₃O⁺ versée à l'équivalence, et la quantité de HO⁻ présente initialement dans le bécher.
- \rightarrow En déduire la relation permettant de déterminer la concentration C_B , en fonction de C_A , $V_{A(ed)}$ et V_B

Dosage 1/ dosage colorimétrique

- → Que peut-on dire du pH de la solution dans le bécher à l'équivalence ?
- Les espèces intervenant lors de ce dosage (H₃O⁺, HO⁻, H₂O) sont toutes incolores ; pour détecter l'équivalence, on utilise **un indicateur coloré**, rajouté dans le Destop dilué en début de dosage.
- → Donner la définition d'un indicateur coloré
- → Justifier pourquoi on utilise, dans le dosage du Destop, le **BBT** (bleu de bromothymol), dont on donne ci-dessous les différentes couleurs selon le pH de la solution dans laquelle il est versé


Couleur du BBT					
pH inférieur à 6 Entre 6 et 7,6 pH supérieur à		pH supérieur à 7,6			
jaune	vert	bleu			

→ Expliquer les changements de couleurs observées au cours du dosage.

- Remplir une burette graduée avec la solution S_A d'acide chlorhydrique (H_3O^+ ; Cl^-) de concentration molaire C_A = 2,5.10 $^{-2}$ mol.L⁻¹. Ajuster son zéro.
- Avec une pipette jaugée, prélever un volume V_B = 10,0 mL de la solution S_B de Destop dilué et les introduire dans un erlenmeyer.
- Ajouter quelques gouttes de BBT et un turbulent magnétique. Poser l'erlenmeyer sur un agitateur magnétique ; Intercaler un morceau de papier blanc entre l'erlen et l'agitateur magnétique. Réaliser une agitation régulière.
- Ajouter la solution S_{A} doucement afin d'obtenir le changement de couleur du BBT
- \rightarrow Donner $V_{A1}(eq)$, le volume d'acide chlorhydrique versé à l'équivalence.
- \rightarrow Refaire un 2nd dosage, et noter $V_{A2}(eq)$, le volume d'acide chlorhydrique versé à l'équivalence

Dosage 2/ dosage conductimétrique

- Remplir une burette graduée avec la solution S_A d'acide chlorhydrique (H_3O^+ ; Cl^-) de concentration molaire C_A = 2,5.10 $^{-2}$ mol.L $^{-1}$. Ajuster son zéro.
- Avec une pipette jaugée, prélever un volume V_B = 10,0 mL de la solution S_B et les introduire dans un bécher de 250 mL.
- Ajouter au bécher environ 100 mL d'eau distillée et un barreau aimanté. Placer le bécher sur un agitateur magnétique et réaliser une agitation régulière.
- Plonger la cellule du conductimètre dans le bécher. Noter la valeur initiale de la conductivité σ_0 .
- Ajouter la solution S_A , mL par mL, jusqu'à V_A = 20,0 mL et, à chaque ajout, mesurer la conductivité σ de la solution dans le bécher. Noter les valeurs dans un tableau.
- Tracer le graphe σ = f(V_A).
- \rightarrow La courbe obtenue comporte 2 segments de droite de pentes différentes; l'intersection de ces deux segments de droite donne le **volume d'acide versé à l'équivalence** ; déterminer $V_{A3}(eq)$
- → Recopier et compléter le tableau suivant en indiquant comment varient les quantités des ions H₃O⁺, Cl⁻, Na⁺ et OH⁻ dans le bécher au cours du dosage, suivant les ajouts d'acide chlorhydrique

Nion	H ₃ O ⁺	CI-	Na⁺	HO-
Avant de commencer le dosage V _A = 0				
Avant l'équivalence V _A < V _A (eq)				
Après l'équivalence V _A > V _A (eq)				

ightarrow A l'aide des conductivités molaires ioniques des ions données dans le document 2, interpréter l'allure de la courbe en recopiant et complétant les phrases suivantes :

► Pour V_A <V_A(eq) :

- → Cette partie de la courbe correspond à la disparition des ions qui réagissent avec les ions apportés par l'acide chlorhydrique
- → Les ions indifférents apportés par l'acide chlorhydrique remplacent les ions ayant réagi; or la conductivité des ions est bien inférieure à celle des ions donc la conductivité de la solution

ightharpoonup Pour $V_A > V_A(eq)$:

- → Les ions présents initialement dans le bécher ont totalement disparus; les ions apportés par l'acide chlorhydrique ne sont plus alors consommés.
- → L'ajout d'ions et d'ions provoque l'augmentation de la conductivité
- ▶ Pour $V_A = V_A(eq)$, les ions présents initialement dans le bécher, ont totalement réagis avec les ions versés

Pourcentage massique

Concentration en quantité de matière d'hydroxyde de sodium

- \rightarrow Calculer la moyenne des 3 valeurs obtenues pour $V_A(eq)$
- → Calculer C_B, la concentration en quantité de matière d'hydroxyde de sodium dans la solution diluée de Destop
- $\rightarrow \textit{Exprimer la valeur de C_B avec son incertitude sachant que} \left(\frac{uC_B}{C_B}\right)^2 = \left(\frac{uC_A}{C_A}\right)^2 + \left(\frac{uV_{A(eq)}}{V_{A(eq)}}\right)^2 + \left(\frac{uV_B}{V_B}\right)^2$

$$V_B = (10,00 \pm 0,05) \text{ mL}$$
 $C_A = (2,50 \pm 0,03).10^{-2} \text{ mol.L}^{-1}$ $u(V_{Aeq}) = 0.3 \text{ mL}$

→ Déterminer **C**, la concentration en quantité de matière d'hydroxyde de sodium dans la solution concentrée de Destop; exprimer le résultat avec son incertitude

Concentration en masse d'hydroxyde de sodium

- \rightarrow Déterminer C_m , la concentration en masse d'hydroxyde de sodium dans la solution concentrée de Destop; exprimer le résultat avec son incertitude ; $M(NaOH) = 40 \text{ g.mol}^{-1}$
- → En déduire la masse d'hydroxyde de sodium dissoute dans 1L de solution de Destop; exprimer le résultat avec son incertitude

Pourcentage massique

- La masse volumique du Destop est de 1,1 g.mL-1
- → Après l'avoir défini, déterminer le pourcentage massique (avec son incertitude) en hydroxyde de sodium dans le Destop
- Sur l'étiquette du Destop on peut lire « solution à 10% en masse d'hydroxyde de sodium»
- → Conclure et valider les résultats en calculant un écart relatif et un Z score.