TP 3 :

Alarme intrusion

Pour tous les montages on s'aidera des schémas des montages projetés au tableau

Attention de toujours bien brancher la DEL utilisée, en série avec une résistance de protection

• Le but de cette activité est de réaliser un circuit qui permet d'allumer une alarme lors d'une intrusion : lorsque l'intrus passe devant un capteur de lumière et donc cache le capteur, l'alarme doit sonner ! tout un programme....

Circuit 1 : Etude de la photorésistance

Ce montage d'étudier l'influence de l'éclairement de la photorésistance sur la tension aux bornes de R

Remarque : Les broches ANALOG IN

Sur le connecteur de la carte ARDUINO (en bas à droite) on remarque 6 broches marquées A0 à A5 avec la mention ANALOG IN : ce sont des entrées analogiques, qui peuvent être considérées comme des voltmètres fonctionnant entre 0 et 5V, avec une précision de 5mV.

Ces entrées sont reliées à un convertisseur analogique numérique (CAN)qui code sur 10 bits et convertit linéairement la tension d'entrée en nombre compris entre 0 (pour une tension de 0V) et 1023(pour 5V).

⇒ Pour afficher la valeur « réelle » de la tension aux bornes de la résistance R, il est nécessaire de « convertir » la valeur de tension en V(comprise entre 0 et 5V)

mesurée en A0 (comprise entre 0 et 1023) en valeur de tension en V (comprise entre 0 et 5V).

Ouvrir le programme « tension_photor_sistance.ino »

- → Vérifier le code avec l'onglet « validation »
- → Téléverser le code dans l'Arduino

→ Afficher le moniteur série (permettant de visualiser la tension mesurée) en cliquant sur l'onglet «Outils» puis sélectionner « Moniteur série »

- → Faire varier l'intensité lumineuse détectée par la photorésistance.
- \rightarrow Qu'observe-ton ? Comment varie la tension lorsque la photorésistance est cachée ?

ARDUINO

Circuit 2 : Allumage automatique d'une DEL

- Ce montage permet d'allumer automatiquement une DEL lorsque la luminosité baisse
- Brancher la DEL en série avec sa résistance de protection d'environ 100 Ω .
- Brancher la photorésistance en série avec la résistance de 1 $k\Omega$.
- Réaliser le montage ci-contre

Ouvrir le programme « alarme_lumineuse.ino »

- → Vérifier le code avec l'onglet « validation »
- → Téléverser le code dans l'Arduino
- → Eclairer ou cacher la photorésistance. Qu'observe-t-on

Circuit 3 : Alarme intrusion

 Ce montage permet d'allumer un buzzer lors d'une intrusion (passage de l'intrus devant la photorésistance)

- Réaliser le montage ci-dessous

Ouvrir le programme « d_tecteur_intrusion.ino »

- → Vérifier le code avec l'onglet « validation »
- → Téléverser le code dans l'Arduino
- \rightarrow Vérifier que le buzzer se met à sonner lorsque l'on cache la photorésistance
- → Modifier le programme afin de faire sonner différemment le buzzer

ARDUTNO