TSTL SPCL chimie

La précipitation sélective

AE3

- Au cours d'un TP de chimie, les élèves ont versé dans le bidon « recyclage métaux » une solution de chlorure de fer (III) et une solution de sulfate de cuivre (II).
- ♥ Comment traiter ce mélange afin de séparer les ions Fe³+ des ions Cu²+?

Substances chimiques et pictogrammes de sécurité

Hydroxyde de sodium NaOH (s)

 H314 - provoque de graves brûlures et des lésions oculaires graves

Chlorure de cuivre dihydraté CuCl₂,2H₂O (s)

- H302 Nocif en cas d'ingestion
- H315 Provoque une sévère irritation de la peau
- H319 Provoque une irritation cutanée
- H410 Très toxique pour les organismes aquatiques, entraı̂ne des effets néfastes à long terme

Nitrate de fer (III), nonahydraté Fe(NO₃)₃,9H₂O_(s)

H272 – Peut aggraver un incendie ; comburant
 H315 – Provoque une irritation cutanée
 H319 – Provoque une sévère irritation des yeux

Thiocyanate de potassium K⁺ (aq) + SCN⁻ (aq)

- H302 Nocif en cas d'ingestion.
- H312 Nocif par contact cutané.
- H332- Nocif par inhalation.
- H412 Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme.

Données:

- En solution, les ions métalliques X^{a+} précipitent en présence d'ions hydroxyde HO^- donnant des hydroxydes métalliques $X(OH)_{a(s)}$: $X^{a+}_{(aq)} + a OH^-_{(aq)} \rightarrow X(OH)_{a(s)}$; La précipitation dépend du pH
- On rappelle que le précipité d'hydroxyde métallique apparait lorsque : $\left[HO^{-}\right]^{a} \times \left[X^{a+}\right] = Ks$ Avec Ks la constante de solubilité de l'hydroxyde métallique
- $[H_3O^+] \times [HO^-] = 10^{-14}$ $pH = -log[H_3O^+]$ $[H_3O^+] = 10^{-pH}$
- L'ion SCN- (aq) est un réactif caractéristique des ions fer (III).

On dispose des solutions suivantes :

- une solution de nitrate de fer III ($Fe^{3+}_{(aq)}$; 3 $NO_{3-(aq)}$) dans laquelle [$Fe^{3+}_{(aq)}$] = 3,0.10⁻² mol.L⁻¹
- une solution de chlorure de cuivre ($Cu^{2+}_{(aq)}$; 2 $Cl^{-}_{(aq)}$). dans laquelle [$Cu^{2+}_{(aq)}$] = 3,0.10⁻² mol.L⁻¹
- une solution d'hydroxyde de sodium (Na⁺(aq); HO⁻(aq)) de concentration 2,0 mol.L⁻¹
- une solution d'acide sulfurique concentrée

A/ Préparation des solutions

- \rightarrow Calculer la masse de nitrate de fer, nonahydraté **Fe(NO₃)₃,9H₂O**_(s) qu'il faut peser pour préparer **100 mL** d'une solution de concentration **3,0.10**⁻² **mol.L**⁻¹
- → Calculer la masse de chlorure de cuivre dihydraté CuCl₂,2H₂O_(s) qu'il faut peser pour préparer 100 mL d'une solution de concentration 3,0.10⁻² mol.L⁻¹
- Préparer les solutions

B/ Etude de l'hydroxyde de fer

▶ Précipitation de l'hydroxyde de fer

- Introduire dans un tube à essais environ 2 mL de la solution de nitrate de fer III contenant les ions Fe³⁺
- Ajouter quelques gouttes de la solution d'hydroxyde de sodium (Na $^+$ $_{(aq)}$; HO $^ _{(aq)}$).
- → Noter vos observations. Ecrire l'équation qui traduit la réaction de précipitation.

▶ ► <u>Détermination du pH de début de précipitation</u>

Détermination théorique

- La constante de solubilité de l'hydroxyde de fer Fe(OH)_{3(s)} est Ks1 = 2.10⁻³⁹
- \rightarrow Quelle relation peut-on écrire (entre les concentrations des ions Fe³⁺ et OH⁻) lorsque le précipité d'hydroxyde de fer apparait ?
- \rightarrow Calculer la concentration des ions HO⁻ lorsque commence la précipitation, si on estime que [Fe³⁺(aq)] = 3,0.10⁻² mol.L⁻¹
- \rightarrow Calculer la concentration des ions H₃O⁺ lorsque commence la précipitation.
- → Calculer le pH_{théorique} de début de précipitation.

Détermination expérimentale

- Introduire dans un bécher 20 à 30 mL de la solution de nitrate de fer.
- Placer le bécher sur un agitateur magnétique. Mettre un turbulent dans le bécher. Mettre en route l'agitation.
- Acidifier la solution, en ajoutant quelques gouttes d'acide sulfurique concentré, afin d'avoir un pH initial proche de 1.
- Verser ensuite doucement, goutte à goutte, à l'aide d'une petite pipette, de la solution d'hydroxyde de sodium, jusqu'à l'obtention du précipité d'hydroxyde de fer III.
- → Mesurer le pH de la solution lorsque l'hydroxyde de fer apparait.

C/ Etude de l'hydroxyde de cuivre

▶ ► Précipitation de l'hydroxyde de cuivre

- Introduire dans un tube à essais environ 2 mL de la solution de chlorure de cuivre contenant les ions Cu²⁺
- Ajouter quelques gouttes de la solution d'hydroxyde de sodium ($Na^+_{(aq)}$; $HO^-_{(aq)}$).
- → Noter vos observations. Ecrire l'équation qui traduit la réaction de précipitation.

▶ ► <u>Détermination du pH de début de précipitation</u>

Détermination théorique

- La constante de solubilité de l'hydroxyde de cuivre Cu(OH)_{2(s)} est **Ks2 = 2.10⁻²⁰**
- \rightarrow Quelle relation peut-on écrire (entre les concentrations des ions Cu²⁺ et OH⁻) lorsque le précipité d'hydroxyde de cuivre apparait ?
- \rightarrow Calculer la concentration des ions HO⁻ lorsque commence la précipitation, si on estime que [Cu²⁺(aq)] = 3,0.10⁻² mol.L⁻¹
- → Calculer la concentration des ions H₃O⁺ lorsque commence la précipitation.
- → Calculer le pH_{théorique} de début de précipitation.

Détermination expérimentale

- Introduire dans un bécher 20 à 30 mL de la solution de chlorure de cuivre.
- Placer le bécher sur un agitateur magnétique. Mettre un turbulent dans le bécher. Mettre en route l'agitation.
- Acidifier la solution, en ajoutant quelques gouttes d'acide sulfurique concentré, afin d'avoir un pH initial proche de 1.
- Verser ensuite doucement, goutte à goutte, à l'aide d'une petite pipette, de la solution d'hydroxyde de sodium, jusqu'à l'obtention du précipité d'hydroxyde de cuivre.
- → Mesurer le pH de la solution lorsque l'hydroxyde de cuivre apparait.

D/ Traitement d'une solution contenant des ions métalliques

- Introduire dans un bécher, 20 mL de la solution de chlorure de cuivre et 20 mL de la solution de nitrate de fer
- \rightarrow Proposer un protocole permettant de séparer les ions Cu²⁺ et Fe³⁺ du mélange; Faire valider le protocole puis le réaliser.
- → Proposer un protocole permettant de vérifier que la séparation a été correctement effectuée ; Faire valider le protocole puis le réaliser.