Séquence 9

Nomenclature (R) et (S) des stéréoisomères

AD2

Partie 1 Nomenclature (R) et (S)

Règles CIP de nomenclature

Pour distinguer nommément deux énantiomères, on utilise **les règes CIP** proposées par 3 chimistes en 1966 (**C**ahn, Ingold et **P**relog)

Etape 1: On repère le carbone asymétrique et les 4 atomes (ou groupes d'atomes) liés au C*

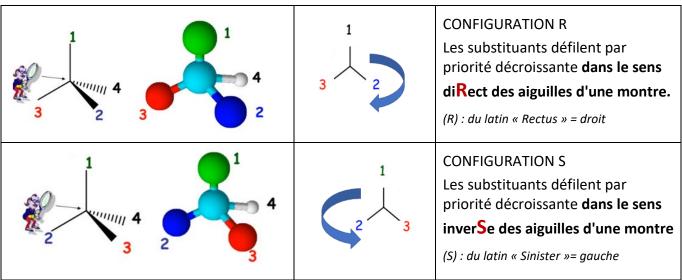
Etape 2: On classe par un ordre de priorité les 4 atomes (ou groupes d'atomes) liés directement au C* (atomes appelés de rang 1)

- On priorise les atomes par la valeur de leur numéro atomique : Plus le numéro atomique d'un atome est élevé, plus l'atome est prioritaire
- En cas d'égalité pour les atomes au 1^{er} rang, on applique la même règle aux atomes qui leurs sont liés (atomes de 2nd rang), et ainsi de suite jusqu'à ce qu'on atteigne une différence
- Une liaison multiple équivaut à plusieurs liaisons simples entre les 2 atomes

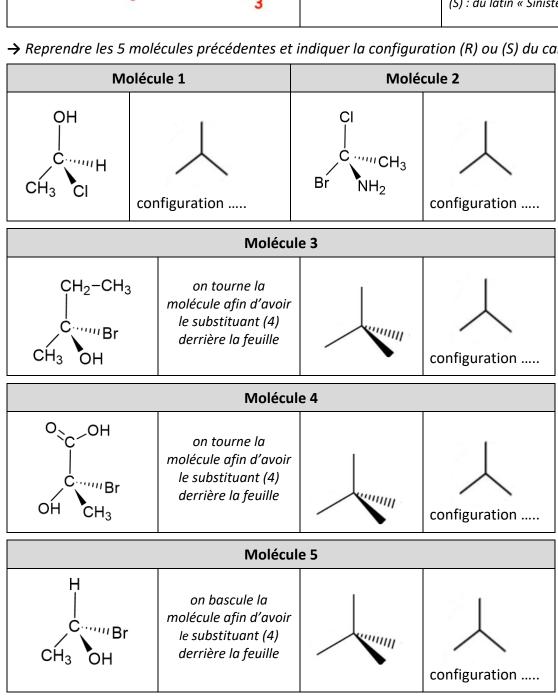
Numéro atomique

Н	С	N	0	S	Cl	Br	I
Z = 1	Z = 6	Z = 7	Z = 8	Z = 16	Z = 17	Z = 35	Z = 53

Molécule 1	Molécule 2	Molécule 3	Molécule 4	Molécule 5
OH CH ₃ CI	CI CCH ₃ NH ₂	CH ₂ -CH ₃ CH ₃ OH	OH CH3	H CH ₃ OH

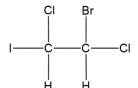

- → Surligner les atomes de rang 1 (atomes directement reliés au C*)
- → Numéroter les 4 atomes ou groupes d'atomes en respectant les règles CIP de priorisation

Règles CIP de nomenclature (suite)


Etape 3 : On tourne la molécule de façon à placer le substituant (4) en arrière du plan

Etape 4: On regarde dans l'axe C*—(4)

- Si les substituants défilent (de 1 à 3) dans le sens des aiguilles d'une montre, on a **l'énantiomère de configuration (R)**
- Si les substituants défilent (de 1 à 3) dans le sens inverse des aiguilles d'une montre, on a l'énantiomère de configuration (S



→ Reprendre les 5 molécules précédentes et indiquer la configuration (R) ou (S) du carbone asymétrique

Partie 2 Molécule avec 2 atomes de carbone asymétriques

■ Etudions la molécule de *1-bromo-1,2-dichloro-2-iodoethane* donnée cidessus

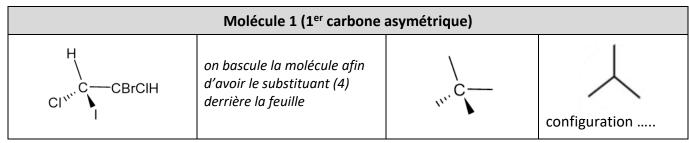
♦ Couples d'énantiomères et de diastéréoisomères :

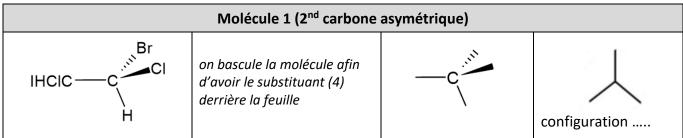
- → Repérer la présence des atomes de carbones asymétriques
- Il existe 4 stéréoisomères différents de cette molécule

Molécule 1	Molécule 2	Molécule 3	Molécule 4
H C H	H C H	H C Br	H C Br

Représentations de Cram de la molécule 1 et de son symétrique			
H C C H	on retourne le symétrique obtenu		
molécule 1	symétrique de la molécule 1 = molécule		

Représentations de Cram de la molécule 2 et de son symétrique			
Br C H	on retourne le symétrique obtenu		
molécule 2	symétrique de la molécule 2 = molécule		


La molécule 1 et la molécule	sont donc 2 molécules image l'une de l'autre (mais non
superposables) : elles forment un couple	d'


La molécule 2 et la molécule sont donc 2 molécules image l'une de l'autre (mais non superposables) : elles forment un couple d'......

- Les autres molécules qui ne sont pas images l'une de l'autre forment des couples de diastéréoisomères.
- → Indiquer les 4 couples de diastéréoisomères :

♦ Configurations des énantiomères et des diastéréoisomères :

🖔 Cherchons la configuration (R) ou (S) des 2 atomes de carbone asymétrique de la molécule 1

→ En déduire la configuration de tous les atomes de carbones asymétriques des molécules 2, 3 et 4

Molécule 1 Molécule 2		Molécule 3	Molécule 4	

→ Rappeler les couples d'énantiomères :

et les couples de diastéréoisomères :

- → Que peut-on dire des configurations des atomes de carbone asymétrique :
 - Dans un couple d'énantiomère
 - Dans un couple de diastéréoisomères

Conclusion: Lorsqu'une molécule possède deux atomes de carbone asymétriques, il est possible à priori, d'obtenir 4 isomères différents pour cette molécule: (...,...), (...,...), (...,...) et (...,...)

Certains isomères sont l'image l'un de l'autre par un miroir plan: ce sont des

Les autres ne sont pas l'image l'un de l'autre et ne sont pas superposables: ce sont des

➡ Dans 2, seule la configuration d'un atome asymétrique change

➡ Dans 2, la configuration des deux atomes asymétriques change