
Fiche 12:

Les électrolyses

(1) Principe de fonctionnement

Un électrolyseur est constitué :

- d'un récipient (tube en U ou cuve)
- de 2 électrodes conductrices, métalliques ou en carbone
- d'une solution électrolytique

- La réaction est endo-énergétique : l'énergie nécessaire à sa réalisation est apportée sous forme électrique par un générateur.
- ► Lorsqu'une électrolyse a lieu, un échange d'électrons s'effectue au cours d'une réaction d'oxydoréduction :
- L'électrode où s'effectue une oxydation est l'anode ; elle est reliée au pôle (+) du générateur
- L'électrode où s'effectue une réduction est la cathode ; elle est reliée au pôle (-) du générateur

Anode :		Cathode :	
Électrode où s'effectue une oxydation		Électrode où s'effectue une réduction	
Pile	Electrolyse	Pile	Electrolyse
Pole (–)	Electrode reliée au pôle (+)	Pole (+)	Electrode reliée au pôle (-) du
de la pile	du générateur	de la pile	générateur

• A l'intérieur de l'électrolyseur, le passage du courant électrique est assuré par les déplacements des ions contenus dans la solution électrolytique : les cations se déplacent vers la cathode, les anions vers l'anode.

(2) Quantité d'électricité mise en jeu

► Lors d'une électrolyse, lorsque le générateur de tension continue débite un courant d'intensité constante I(A) pendant une durée \(\Delta\tau\) (s), le système est traversé par la quantité d'électricité Q(C) :

$$Q = I \times \Delta t$$

▶ La quantité d'électrons traversant la cuve est : $Q = I \times \Delta t = n_{e^-} \times F \Rightarrow n_{e^-} = \frac{I \times \Delta t}{F}$

Où
$$F = N_A \times e = 6{,}022.10^{23} \times 1{,}602.10^{-19} =$$
 96500 C.mol $^{-1}$