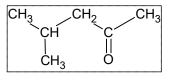

Les réactions chimiques

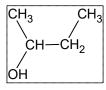
Exercice 1

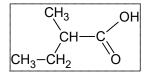
(1) 2,2-diméthylbutanal

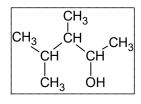
(2) propanal

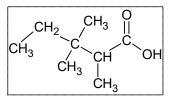

(3) acide propanoique

(4) propan-2-ol


(5) éthanal

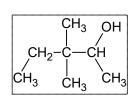

(6) propanone

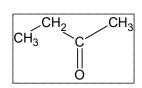

(7) Ethanol

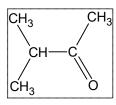

(8) 4-méthylpentan-2-one

(9) Méthanal

(10) Butan-2-ol

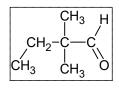


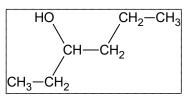


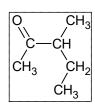


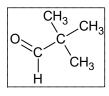
(11) Acide 2-méthylbutanoique (12) 3,4-diméthylpentan-2-ol

(13) Acide 2,3,3-triméthylpentanoique

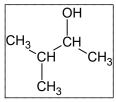


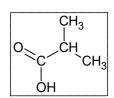





(14) 4,4-diméthylhexan-3-one (15) 3,3-diméthylpentan-2-ol (16) Butanone

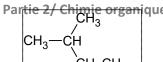
(17) Méthylbutanone

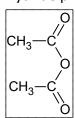


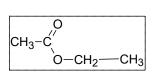

(18) 2,2-diméthylbutanal

(19) Hexan-3-ol

(20) 3-méthylpentan-2-one

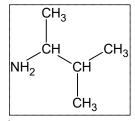

(21) Diméthylpropanal



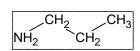

(22) 3-méthylbutan-2-ol (23) Acide méthylpropanoique (24) Acide éthanoique

(28) anhydride propanoïque

(31) anhydride éthanoïque


(34) Ethanoate d'éthyle

$$\begin{array}{c} O \\ CH_2 - C^{''} \\ CH_3 \end{array} O - CH_3$$


(26) propanoate d'éthyle

$$\begin{array}{c} \text{CH}_3\\ \text{CH}_2\\ \text{CH}_3 - \text{C} \qquad \text{CH}_3\\ \text{C} - \text{CH}_2\\ \text{CH}_3 \end{array}$$

(29) 3,4-diméthylhex-3-ène

(32) 3-méthylbutan-2-amine

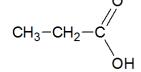
(27) propan-1-amine

$$\begin{array}{c} \text{CH}_3\\ \text{CH}_2\\ \text{CH}_3\text{-C---NH}_2\\ \text{CH}_3\text{-CH}_3\\ \text{CH}_3\end{array}$$

(30) 2,3-diméthylpentan-3-amine

(33) Chlorure de butanoyle

Exercice 2


CH₃
CH₃—C—CH₃

(2) 2-méthylpropan-2-ol

 $\mathrm{CH_3}\text{-}\mathrm{CH_2}$ $\mathrm{-}\mathrm{OH}$

(35) butan-2-amine

(3) éthanol

(4) acide propanoïque

(1) éthanal

(5) méthanal

(6) butanone

(7) propan-2-ol

(8) méthylpropan-2-ol

(9) propanone

(10) acide butanoique

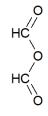
(11) méthanol

(12) butanal

Term STL SPCL Chimie

Isabelle Prigent

$$CH_3 - C - C - C - CH_3$$
 $CH_3 - C - C - C - CH_3$
 $CH_3 - C - C - CH_3$
 $CH_3 - C - C - CH_3$
 $CH_3 - C - C - CH_3$


(13) acide éthanoïque (14) 2-méthylpropanal (15) diméthylpropanal

(16) diméthylbutanone

(17) acide méthylpropanoïque

(18) 2,3-diméthylpentan-3-ol

(19) 2,3-diméthylbutanal

(20) but-2-èn-1-ol

(21) hexan-2,3-diol

(22) Anhydride méthanoïque

$$CH_3 - C^{''}$$
 $O-CH_2-CH_2-CH_3$

(23) ethanoate de propyle

(24) 2- méthylpropan-2-amine

(25) chlorure de méthanoyle

$$\begin{array}{c} \mathsf{CH_3} \ \ \mathsf{CH_3} \\ | \ \ | \ \ | \\ \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH_3} \\ | \ \ \mathsf{NH_2} \end{array}$$

(26) anhydride éthanoïque

(27) 2,3-diméthylbutan-2 amine

Exercice 3

1) Hydrogénation du propène: On obtient du propane

$$CH_3$$
— CH = CH_2 + H_2 — CH_3 — CH_2 — CH_3

2) Formation du 2,3-diméthylbutane

A partir de l'hydrogénation du

2,3-diméthylbut-2-ène

A partir de l'hydrogénation du

2,3-diméthylbut-1-ène

3) Hydrogénation du propanal : On obtient du propan-1-ol

Term STL SPCL Chimie

4) Formation du 3-méthylbutan-1-ol:

A partir de l'hydrogénation du 3-

méthylbutanal

5) Hydrogénation de la 3-méthylbutan-2-one : On obtient le 3-méthylbutan-2-ol

6) Formation du 2,2-diméthylpentan-3-ol : A partir de la 2,2-diméthylpentan-3-one

Exercice 4

1) Hydratation du propène

L'hydratation du propène donne

- soit du propan-1-ol,
- soit du propan-2-ol

2) Hydratation du 2-méthylbut-2-éne

L'hydratation du 2-méthylbut-2-ène donne

- soit du 3-méthylbutan-2-ol,
- soit du 2-méthylbutan-2-ol

3) Formation du butan-2-ol

On peut obtenir du butan-2-ol à partir de l'hydratation du but-1-ène et du but-2-ène.

L'hydratation du but-1-ène peut former également du **butan-1-ol**

L'hydratation du but-2-ène ne forme que du butan-2-ol

4) Formation du 3-méthylpentan-2-ol

On peut obtenir du 3-méthylpentan-2-ol à partir de l'hydratation du **3-méthylpent-1-ène** et du **3-méthylpent-2-ène**

Term STL SPCL Chimie Isabelle Prigent

L'hydratation du 3-méthylpent-1-ène forme également du

3-méthylpentan-1-ol

L'hydratation du 3-méthylpent-2-ène forme également du 3-méthylpentan-3-ol

Exercice 5

1) <u>Déshydratation du 2-méthylpropan-2-ol</u>

La déshydratation du 2-méthylpropan-2-ol conduit à la formation du **2-méthylprop-1-éne** (= méthylpropène)

2) <u>Déshydratation du 3-méthylbutan-2-ol</u>: On obtient du **3-méthylbut-1-ène** ou du **2-méthylbut-2ène**

3) Formation du 3,3-diméthylbut-1-éne

A partir de la déshydratation du **3,3-diméthylbutan-1-ol** ou du **3,3-diméthylbutan-2-ol**

Exercice 6

Ethanol	Ethanal	Acide éthanoïque
CH ₃ -CH ₂ -OH	CH ₃ -C	О СН ₃ —С ОН
C ₂ H ₆ O	C ₂ H ₄ O	$C_2H_4O_2$

Oxydation de l'éthanol en éthanal

MnO₄⁻/Mn²⁺: MnO₄⁻ + 8 H⁺ + 5 e⁻ = Mn²⁺ + 4 H₂O (X2) C₂H₄O/C₂H₆O : C₂H₆O = C₂H₄O + 2 H⁺ + 2 e⁻ (X5) 2 MnO₄⁻ + 16 H⁺ + 5 C₂H₆O = 2 Mn²⁺ + 8 H₂O + 5 C₂H₄O + 10 H⁺

2 MnO₄⁻ + 6 H⁺ + 5 C₂H₆O = 2 Mn²⁺ + 8 H₂O + 5 C₂H₄O

Oxydation de l'éthanol en acide éthanoïque

 MnO_4^-/Mn^{2+} : $MnO_4^- + 8 H^+ + 5 e^- = Mn^{2+} + 4 H_2O$ (X4)

Term STL SPCL Chimie Isabelle Prigent

Partie 2/ Chimie organique

$$C_2H_4O_2/C_2H_6O$$
: $C_2H_6O + H_2O = C_2H_4O_2 + 4 H^+ + 4 e^-$ (X5)

$$4 \text{ MnO}_4^- + 32 \text{ H}^+ + 5 \text{ C}_2 \text{H}_6 \text{O} + 5 \text{ H}_2 \text{O} = 4 \text{ Mn}^{2+} + 16 \text{ H}_2 \text{O} + 5 \text{ C}_2 \text{H}_4 \text{O} + 20 \text{ H}^+$$

$4 \text{ MnO}_4^- + 12 \text{ H}^+ + 5 \text{ C}_2 \text{H}_6 \text{O} = 4 \text{ Mn}^{2+} + 11 \text{ H}_2 \text{O} + 5 \text{ C}_2 \text{H}_4 \text{O}_2$

Propan-2-ol	propanone
OH CH ₃ —CH—CH ₃	CH ₃ CH ₃
C3H8O	C3H6O

Oxydation du propan-2-ol par la solution de permanganate de potassium

 MnO_4^-/Mn^{2+} : $MnO_4^- + 8 H^+ + 5 e^- = Mn^{2+} + 4 H_2O$ (X2)

 C_3H_6O/C_3H_8O : $C_3H_8O = C_3H_6O + 2 H^+ + 2 e^-$ (X5)

 $2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_3 \text{H}_8 \text{O} = 2 \text{ Mn}^{2+} + 8 \text{ H}_2 \text{O} + 5 \text{ C}_3 \text{H}_6 \text{O} + 10 \text{ H}^+$

 $2 \text{ MnO}_4 + 6 \text{ H}^+ + 5 \text{ C}_3 \text{H}_8 \text{O} = 2 \text{ Mn}^2 + 8 \text{ H}_2 \text{O} + 5 \text{ C}_3 \text{H}_6 \text{O}$

Oxydation de l'alcool benzylique par l'ion hypochlorite en milieu basique

 CIO^{-}/CI^{-} : $CIO^{-} + 2 e^{-} + H_{2}O = CI^{-} + 2 OH^{-}$

 C_7H_6O/C_7H_8O $C_7H_8O = C_7H_6O + 2 e^- + 2 H^+$

 $C_7H_8O + 2 OH^- = C_7H_6O + 2 e^- + 2 H^+ + 2 OH^-$

 $C_7H_8O + 2 OH^- = C_7H_6O + 2 e^- + 2 H_2O$

 $C_7H_8O + 2OH^- + ClO^- + H_2O = C_7H_6O + 2e^- + 2H_2O + Cl^- + 2OH^-$

 $C_7H_8O + CIO^- = C_7H_6O + H_2O + CI^-$

Exercice 7

Réaction d'estérification entre l'acide butanoïque et le méthanol : il se forme du butanoate de méthyle

$$CH_3-CH_2-CH_2-C$$
 + CH_3-OH = $CH_3-CH_2-CH_2-C$ + CH_2-CH_2-C O— CH_3

<u>Réaction d'estérification entre l'acide méthanoïque et le propan-1-ol</u> : il se forme du **méthanoate de propyle**

$$H-C$$
 + $CH_3-CH_2-CH_2-OH = HC$ + H_2O O $O-CH_2-CH_2-CH_3$

<u>Réaction qui permet de synthétiser l'éthanoate de butyle</u> : à partir de **l'acide éthanoïque** et du **butan-1-**

Term STL SPCL Chimie Isabelle Prigent

$$CH_3-C$$
 + $CH_3-CH_2-CH_2-CH_2-OH$ = CH_3-C + H_2O O— $CH_2-CH_2-CH_2-CH_3$

Réaction d'hydrolyse du propanoate d'éthyle : il se forme de l'acide propanoique et de l'éthanol

$$CH_3-CH_2-C$$
 + H_2O = CH_3-CH_2-C + CH_3-CH_2-OH OH

Exercice 8

Test à la liqueur de Fehling

La liqueur de Fehling, contenant les ions Cu²⁺, réagit avec une substance réductrice : donc elle contient une substance oxydante.

Couple oxydant/réducteur : Cu²⁺/Cu₂O

Equation de la réaction en milieu basique

 Cu^{2+}/Cu_2O : 2 $Cu^{2+} + 2 e^- + 2 OH^- = Cu_2O + H_2O$

 $RCO_2^-/RCOH : RCOH + H_2O = RCO_2^- + 2 e^- + 3 H^+$

 $RCOH + H_2O + 3 OH^- = RCO_2^- + 2 e^- + 3 H^+ + 3 OH^-$

 $RCOH + H_2O + 3 OH^- = RCO_2^- + 2 e^- + 3 H_2O$

 $RCOH + 3 OH^{-} = RCO_{2}^{-} + 2 e^{-} + 2 H_{2}O$

RCOH + 5 OH $^{-}$ + 2 Cu $^{2+}$ = RCO $_{2}^{-}$ + 3 H $_{2}$ O+ Cu $_{2}$ O

Test au réactif de Tollens

Equation de la réaction en milieu basique

 Ag^{+}/Ag : $Ag^{+} + e^{-} = Ag$ (x2)

 $RCO_2^-/RCOH : RCOH + 3 OH^- = RCO_2^- + 2 e^- + 2 H_2O$

RCOH + 3 OH $^{-}$ + 2 Ag $^{+}$ = RCO $_{2}^{-}$ + 2 H₂O+ 2 Ag

Exercice 9

- (1) Réaction de substitution
- (2) Réaction d'élimination
- (3) Réaction d'addition
- (4) Réaction d'addition
- (5) Réaction d'addition
- (6) Réaction de substitution

- (7) Réaction d'addition
- (8) Réaction d'élimination
- (9) Réaction de substitution
- (10)Réaction de substitution