

Représentation de Lewis des espèces chimiques

Synthèse

A : Représentation de Lewis

1.	Représentation de Lewis des atomes	 P 1
2.	Représentation de Lewis des molécules	 P 1
3.	Représentation de Lewis des ions	 P 2
B : Mé	somérie	
1.	Délocalisation des électrons	 Р3
2	Forma la plus stable	DΛ

A: Représentation de Lewis

► ► (1). Représentation de Lewis d'un atome

- Gilbert Newton Lewis 1875-1946) professeur à l'université de Berkeley a introduit l'idée de la règle de l'octet, et proposé le modèle de partage d'une paire d'électrons pour interpréter la liaison entre deux atomes
- La représentation de Lewis d'un atome, représente les électrons de la couche externe d'un atome :
- → Certains de ces électrons sont représentés par un **point** : ils sont dits « **célibataires** ».

H							He
Li	Be ·	• B •	· ċ ·	N·	<u>.</u>	F·	Ne
Na	Mg ·	·Al·	· Si ·	P •	s.	Cl·	Ar
ĸ	ca•	-					

Ce sont les « points d'attaches » des atomes : ce sont eux qui seront engagés dans les liaisons covalentes.

→ Les autres électrons présents dans la couche externe et n'intervenant pas dans les futures liaisons sont regroupés par 2 et sont représentés par des **traits**, appelés « **doublets non liants** ».

► ► (2). Représentation de Lewis des molécules

- La représentation de Lewis d'une molécule fait apparaître l'ensemble des atomes présents dans une molécule ainsi que tous les électrons externes de ces atomes, regroupés par paires, par doublets :
- → les doublets permettant de lier les atomes entre eux (liaisons covalentes) sont appelés « *doublets liants* ».

→ les autres doublets, constitués par des paires d'électrons externes ne participant pas à une liaison chimique, sont appelés « *doublets non liants* »

► ► (3). Représentation de Lewis des ions

ETAPE 1/ On détermine le nombre d'électrons de valence de chaque atome isolé intervenant dans l'édifice ionique (à l'aide de la structure électronique ou du schéma de Lewis de l'atome isolé)

ETAPE 2/ On en déduit le nombre total d'électrons de valence dans l'édifice en tenant compte de la charge global de l'ion

ETAPE 3/ On en déduit le nombre total de doublets (liants en non liants) :

$$nb_{\text{doublets}} = \frac{nb_{\text{\'electrons de valence}}}{2}$$

ETAPE 4/ On répartit les doublets dans l'édifice ionique

ETAPE 5/ On positionne les charges formelles :

Au nombre d'électrons de valence de l'atome isolé on soustrait le nombre d'électrons autour de l'atome dans l'édifice

- chaque liaison covalente apporte 1 e- à l'atome
- chaque doublet non liants apporte 2 e- à l'atome

<u>Remarque</u>: lorsqu'il y a plusieurs formules de Lewis possible, on retient celle dans laquelle les charges formelles sont les moins nombreuses

EXEMPLE: Etablissons la formule de Lewis de l'ions H₃O⁺

Н	Z = 1	K ₁	1s ¹	1 électron de valence	
0	Z = 8	K ₂ L ₆	$1s^22s^22p^4$	6 électrons de valence	
Charge de l'ion: 1+ O		On <u>retire</u> 1	<u>re</u> 1 électron de valence		

Nombre total d'électrons de valence : $3 \times (1) + 1 \times (6) - 1 = 8$

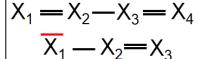
Dans le calcul du nombre total de valence, on doit tenir compte :

- Du nombre total d'atome H et du nombre d'électrons de valence de chacun (3 atomes H ont chacun 1 électron de valence)
- Du nombre total d'atome O et du nombre d'électrons de valence de chacun (1 atome O avec 6 électrons de valence)
- De la charge de l'ion (la charge + indique que l'on retire 1 électron de valence)

Nombre de doublets:
$$nb_{doublets} = \frac{nb_{\acute{e}lectrons\ de\ valence}}{2} = \frac{8}{2} = 4\ doublets$$
 H-O-h

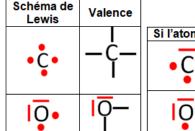
Position des charges formelles

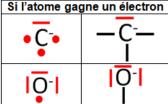
	Électrons de valence dans l'atome isolé	Electrons « en propre » dans l'édifice	Charge formelle
Н	1 e-	1 liaison : 1 e-	1-1=0
0	6 e-	3 liaisons : 3 e- 1 doublet : 2 e-	6 – 5 = 1

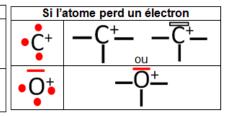

Conclusion : le schéma de Lewis de l'ion H₃O⁺ doit comporter 4 doublets *(liants et non liants)* ainsi qu'une charge formelle (+) portée par l'atome d'oxygène

B: L'effet mésomère

► ► (1). <u>Délocalisation des électrons</u>


- ▶ L'effet mésomère est un effet électronique présent dans les molécules (ou les ions) comportant des doubles liaisons et des atomes avec des doublets non-liants.
- ▶ Dans ces édifices, les électrons des doubles liaisons et des doublets non liants peuvent se déplacer : on parle de délocalisation des électrons
- On observe l'effet mésomère lorsque l'on a les enchainements suivants :




Les différentes formes mésomères sont obtenues par des déplacements successifs de doublet d'électrons symbolisés par des flèches.

Lors de l'écriture des différentes formes mésomères :

- On garde toujours le même enchainement d'atomes
- Il doit y avoir la même charge globale d'une forme mésomère à une autre
- Il faut veiller à ce qu'il n'y ait pas plus de 8 électrons autour d'un élément de la seconde période (C, N, O, F), et de 2 autour de H. Les éléments de la 3^{ième} période (et les suivantes) peuvent être hypervalents (plus de 4 doublets)
- On peut être amené à modifier le schéma de Lewis des éléments

► ► (2). Forme la plus probable

- Pour la représentation de Lewis de la molécule (ou de l'ion) on utilise la forme la plus stable, donc la plus probable ; Les autres formes ont parfois un intérêt pour expliquer la réactivité des composés.
- Parmi les différentes formes mésomères écrites, la forme la plus probable :
 - possède un nombre maximal d'atomes avec un octet d'électrons (en effet dans certaines formes mésomères, certains atomes ont 6 e⁻)
 - est la forme possédant le moins de charge formelle. Les charges formelles doivent être réduites au maximum. Les charges formelles négatives doivent être portées par les atomes les plus électronégatifs.

Exemple 1 : Le butadiène

$$CH_2 \stackrel{\frown}{=} CH \stackrel{\frown}{=} CH \stackrel{\frown}{=} CH_2 \stackrel{\bigcirc}{=} CH \stackrel{\frown}{=} CH \stackrel{\bigcirc}{=} CH_2$$

Il existe donc 2 représentations de Lewis pour le butadiène

La forme mésomère la plus probable est la $1^{\text{ère}}$ car elle ne contient pas de charges et dans la 2^{nde} forme le carbone C+ ne possède que 6 électrons

$$\begin{array}{c} \textbf{Exemple 2}: \textbf{Le but-3-èn-2-one} \\ \hline \\ \textbf{CH}_{3}-\textbf{C}-\textbf{CH}=\textbf{CH}_{2} \\ \hline \\$$

La forme la plus probable est la 1^{ère} car :

- la 1^{ère} forme ne possède pas de charge.
- la 2^{nde} forme possède un atome d'oxygène entouré que de 6 électrons
- la 3^{ième} forme possède un atome de carbone entouré que de 6 électrons