

Les réactions acido-basiques

Synthèse

A : La réaction acide-base	 P 1
B : Constante d 'équilibre d'une réaction acide-base	 P 1
C : Sens d'évolution spontanée d'une réaction acide-base	р 3

A: La réaction acide-base

▶ Une réaction acido-basique est une réaction au cours de laquelle il y a un transfert de proton(s) entre l'acide d'un couple acide/base et la base d'un autre couple pour former les espèces conjuguées

EXEMPLE:

(1) Réaction entre l'acide éthanoïque CH₃CO₂H et l'ammoniac CH₃CO₂H/CH₃CO₂⁻ ; NH₄⁺/NH₃

$$CH_3CO_2H = CH_3CO_2^- + H^+$$

 $NH_3 + H^+ = NH_4^+$
 $CH_3CO_2H + NH_3 = CH_3CO_2^- + NH_4^+$

(2) Réaction entre l'ammoniac et l'eau NH₃ NH₄+/NH₃ ; H₂O/HO⁻

$$H_2O = HO^- + H^+$$
 $NH_3 + H^+ = NH_4^+$
 $H_2O + NH_3 = HO^- + NH_4^+$

B : Constante d'équilibre d'une réaction acido-basique

■ Etudions la réaction acido-basique entre un acide et une base : $Acide_1 + Base_2 \rightarrow Base_1 + Acide_2$

♦ Cette réaction met en jeu 2 couples :

Acide ₁ /Base ₁	Acide ₂ /Base ₂
Constante d'acidité $K_{A1} = \frac{\left[Base_{1}\right] \times \left[H_{3}O^{+}\right]}{\left[Acide_{1}\right]}$	Constante d'acidité $K_{A2} = \frac{\left[Base_2\right] \times \left[H_3O^+\right]}{\left[Acide_2\right]}$

⇔En multipliant le numérateur et le dénominateur de la fraction par [H₃O⁺], on obtient :

$$\begin{split} & K = \frac{\left[\mathsf{Base}_1\right] \times \left[\mathsf{Acide}_2\right]}{\left[\mathsf{Acide}_1\right] \times \left[\mathsf{Base}_2\right]} = \frac{\left[\mathsf{Base}_1\right] \times \left[\mathsf{H}_3\mathsf{O}^+\right] \times \left[\mathsf{Acide}_2\right]}{\left[\mathsf{Acide}_1\right] \times \left[\mathsf{Base}_2\right] \times \left[\mathsf{H}_3\mathsf{O}^+\right]} \\ & K = \frac{\left[\mathsf{Base}_1\right] \times \left[\mathsf{H}_3\mathsf{O}^+\right]}{\left[\mathsf{Acide}_1\right]} \times \frac{\left[\mathsf{Acide}_2\right]}{\left[\mathsf{Base}_2\right] \times \left[\mathsf{H}_3\mathsf{O}^+\right]} = K_{\mathsf{A1}} \times \frac{1}{K_{\mathsf{A2}}} = \frac{K_{\mathsf{A1}}}{K_{\mathsf{A2}}} \end{split}$$

Term STL SPCL Chimie

▶ Soit la réaction acido-basique d'équation : $Acide_1 + Base_2 \rightarrow Base_1 + Acide_2$ mettant en jeu le couple $Acide_1/Base_1$ de constante d'acidité K_{A1} et le couple $Acide_2/Base_2$ de constante d'acidité K_{A2}

- Si la constante d'équilibre de la réaction acido-basique est telle que :
 - K > 1000 : la réaction peut être considérée comme étant totale
 - K < 0,001 : la réaction n'a pratiquement pas lieu ; la réaction inverse, elle, serait quasi totale
 - 0,001< K < 1000: la réaction conduit à un équilibre chimique. Les 4 espèces chimiques ont présentes. Les deux réactifs ne disparaissent que partiellement

EXEMPLE (1):

Réaction entre l'acide éthanoïque et l'ammoniac : CH₃CO₂H + NH₃ = CH₃CO₂- + NH₄+

Couple $CH_3CO_2H/CH_3CO_2^-$ de pK_A = 4,75 \rightarrow K_{a1} = 10^{-4,75} Couple NH₄+/NH₃ de pKA = 9,25 \rightarrow K_{a2} = 10^{-9,25}

Constante d'équilibre de la réaction

$$K = \frac{\left[CH_{3}CO_{2}^{-}\right] \times \left[NH_{4}^{+}\right]}{\left[CH_{3}CO_{2}H\right] \times \left[NH_{3}\right]} = \frac{K_{A1}}{K_{A2}} = \frac{10^{-4.75}}{10^{-9.25}} = 10^{-4.75 + 9.25} = 10^{4.5} = 3,2.10^{4} >> 1000$$

EXEMPLE (2):

Réaction entre l'acide éthanoïque et les ions hydroxyde : CH₃CO₂H + HO⁻ = CH₃CO₂⁻ + H₂O

Couple CH_3CO_2H/CH_3CO_2 de pK_{A1} = 4,75 $\rightarrow K_{a1} = 10^{-4,75}$ Couple H_2O/HO^- de pK_{A2} = 14 $\rightarrow K_{a2} = 10^{-14}$

Constante d'équilibre de la réaction

$$K = \frac{\left[CH_{3}CO_{2}^{-}\right]}{\left[CH_{3}CO_{2}H\right] \times \left[HO^{-}\right]} = \frac{K_{A1}}{K_{A2}} = \frac{10^{-4,75}}{10^{-14}} = 10^{-4,75+14} = 10^{9,25} = 1,7.10^{9} >> 1000$$

 $\$ La réaction est donc considérée comme totale et peut s'écrire avec une simple flèche CH₃CO₂H + HO⁻ → CH₃CO₂⁻ + H₂O

Term STL SPCL Chimie Isabelle Prigent

EXEMPLE (3):

Réaction entre l'acide éthanoïque et l'eau : CH₃CO₂H + H₂O = CH₃CO₂- + H₃O+

Couple
$$CH_3CO_2H/CH_3CO_2$$
 de $pK_{A1} = 4,75$

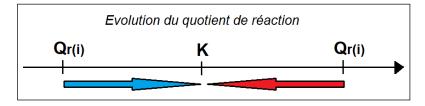
$$\rightarrow$$
 K_{a1} = 10^{-4,75}

de
$$pK_{A2} = 0$$

de pK_{A2} = 0
$$\rightarrow$$
 K_{a2} = 10⁻⁰ =1

Constante d'équilibre de la réaction

$$K = \frac{\left[CH_{3}CO_{2}^{-}\right] \times \left[H_{3}O^{+}\right]}{\left[CH_{3}CO_{2}H\right]} = \frac{K_{A1}}{K_{A2}} = \frac{K_{A1}}{1} = \frac{10^{-4.75}}{1} = 10^{-4.75} = 1.8.10^{-5} < 0.001$$


La réaction ne se produit pratiquement pas

La réaction inverse est donc considérée comme totale et peut s'écrire avec une simple flèche $CH_3CO_2^- + H_3O^+ \rightarrow CH_3CO_2H + H2O$

C: Sens d'évolution spontanée d'une réaction acido-basique

Comme vu dans la fiche 1 :

Lors d'une transformation chimique spontanée, le système évolue vers un état d'équilibre.

Le quotient de la réaction varie de Qr_(i) à Qr_(eq) = K

- Si Qr_(i) < K : le système chimique évolue dans le sens direct de l'équation
- Si $Qr_{(i)}$ > K : le système chimique évolue dans le sens indirect de l'équation
- Si Qr_(i) = K: le système chimique n'évolue plus (au niveau macroscopique); il a atteint son état d'équilibre

Exemple:

On réalise le mélange suivant :

 $V_1 = 20,0$ mL d'une solution d'acide méthanoïque HCO₂H de concentration C₁

 $V_2 = 10,0$ mL d'une solution de méthanoate de sodium (Na⁺, HCO₂⁻) de concentration C₂

V₃ = 10,0 mL d'une solution d'acide éthanoïque CH₃CO₂H de concentration C₃

V₄ = 20,0 mL d'une solution d'éthanoate de sodium (Na⁺, CH₃CO₂⁻) de concentration C₄

On a $C_1 = C_2 = C_3 = C_4 = 1,00.10^{-1} \text{ mol.L}^{-1}$

Equation de la réaction modélisant la transformation chimique :

$$HCO_2H_{(aq)} + CH_3CO_2_{(aq)} = HCO_2_{(aq)} + CH_3CO_2H_{(aq)}$$

Le sens de l'écriture de l'équation ne présage en rien du sens de la transformation réelle

Term STL SPCL Chimie Isabelle Prigent

de pK_A = 3,75
$$\rightarrow$$
 K_{a1} = 10^{-3,75}

$$\rightarrow$$
 K₂₁ = 10^{-3,75}

Couple
$$CH_3CO_2H/CH_3CO_2$$
 de $pK_A = 4,75$

de
$$pK_A = 4.75$$

$$\rightarrow$$
 K_{a2} = 10^{-4,75}

Constante d'équilibre de la réaction

$$K = \frac{\left[\frac{HCO_{2}^{-}\right] \times \left[CH_{3}CO_{2}H\right]}{\left[\frac{HCO_{2}H\right] \times \left[CH_{3}CO_{2}^{-}\right]}} = \frac{K_{A1}}{K_{A2}} = \frac{10^{-3,75}}{10^{-4,75}} = 10^{-3,75+4,75} = 10^{1} = 10$$

Quotient de réaction initial (après mélange mais avant toute réaction)

$$Qr(i) = \frac{\left[HCO_{2}^{-}\right]_{(i)} \times \left[CH_{3}CO_{2}H\right]_{(i)}}{\left[HCO_{2}H\right]_{(i)} \times \left[CH_{3}CO_{2}^{-}\right]_{(i)}}$$

Lors du mélange, les espèces introduites subissent des dilutions

$$\left[HCO_2 H \right]_{(i)} = \frac{C_1 \times V_1}{V_{total}} = \frac{1,0.10^{-1} \times 20}{60} = 3,33.10^{-2} \text{ mol.L}^{-1}$$

$$\left[HCO_{2}^{-} \right]_{\text{(i)}} = \frac{C_{2} \times V_{2}}{V_{\text{total}}} = \frac{1,0.10^{-1} \times 10}{60} = 1,67.10^{-2} \text{ mol.L}^{-1}$$

$$\left[\text{CH}_3 \text{CO}_2 \text{H} \right]_{\text{(i)}} = \frac{\text{C}_3 \times \text{V}_3}{\text{V}_{\text{total}}} = \frac{1,0.10^{-1} \times 10}{60} = 1,67.10^{-2} \text{ mol.L}^{-1}$$

$$\left[CH_{3}CO_{2}^{-}\right]_{(i)} = \frac{C_{4} \times V_{4}}{V_{total}} = \frac{1,0.10^{-1} \times 20}{60} = 3,33.10^{-2} \text{ mol.L}^{-1}$$

$$Qr(i) = \frac{\left[HCO_{2}^{-}\right]_{(i)} \times \left[CH_{3}CO_{2}H\right]_{(i)}}{\left[HCO_{2}H\right]_{(i)} \times \left[CH_{3}CO_{2}^{-}\right]_{(i)}} = \frac{1,67.10^{-2} \times 1,67.10^{-2}}{3,33.10^{-2} \times 3,33.10^{-2}} = 0,25$$

On a alors Qr(i) < K → la réaction évolue dans le sens direct jusqu'à l'équilibre pour lequel Qr = K

Si on écrit initialement l'équation dans le sens : HCO₂-(aq) + CH₃CO₂H(aq) = HCO₂H(aq) + CH₃CO₂-(aq) La valeur de la constante d'équilibre devient :

$$K = \frac{\left[HCO_{2}H\right] \times \left[CH_{3}CO_{2}^{-}\right]}{\left[HCO_{2}^{-}\right] \times \left[CH_{3}CO_{2}H\right]} = \frac{K_{A2}}{K_{A1}} = \frac{10^{-4,75}}{10^{-3,75}} = 10^{-4,75+3,75} = 10^{-1} = 0,1$$

Le quotient de réaction initial devient :

$$Qr(i) = \frac{\left[HCO_2H\right]_{(i)} \times \left[CH_3CO_2^{-}\right]_{(i)}}{\left[HCO_2^{-}\right]_{(i)} \times \left[CH_3CO_2H\right]_{(i)}} = \frac{3,33.10^{-2} \times 3,33.10^{-2}}{1,67.10^{-2} \times 1,67.10^{-2}} = 4$$

Quelque soit le sens de l'écriture initiale de l'équation, on retrouve bien le même résultat : la réaction se fait entre l'acide méthanoïque HCO₂H et les ions éthanoate CH₃CO₂-

Term STL SPCL Chimie Isabelle Prigent